Curve name | $X_{96q}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{96}$ | |||||||||
Curves that $X_{96q}$ minimally covers | ||||||||||
Curves that minimally cover $X_{96q}$ | ||||||||||
Curves that minimally cover $X_{96q}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{12} - 54t^{10} + 54t^{6} - 54t^{2} - 27\] \[B(t) = 54t^{18} + 162t^{16} + 81t^{14} - 189t^{12} - 324t^{10} - 324t^{8} - 189t^{6} + 81t^{4} + 162t^{2} + 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - 19439x + 880661$, with conductor $2535$ | |||||||||
Generic density of odd order reductions | $17/168$ |