Curve name | $X_{99c}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{99}$ | |||||||||
Curves that $X_{99c}$ minimally covers | ||||||||||
Curves that minimally cover $X_{99c}$ | ||||||||||
Curves that minimally cover $X_{99c}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 1080t^{14} - 4536t^{12} - 10368t^{10} - 14040t^{8} - 11664t^{6} - 6156t^{4} - 2160t^{2} - 432\] \[B(t) = 432t^{24} + 6480t^{22} + 43416t^{20} + 171288t^{18} + 440640t^{16} + 769824t^{14} + 914760t^{12} + 705672t^{10} + 296784t^{8} + 5616t^{6} - 59616t^{4} - 25920t^{2} - 3456\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 45075x + 3662750$, with conductor $1800$ | |||||||||
Generic density of odd order reductions | $691/5376$ |