Curve name | $X_{99}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{25}$ | |||||||||
Curves that $X_{99}$ minimally covers | $X_{25}$ | |||||||||
Curves that minimally cover $X_{99}$ | $X_{182}$, $X_{186}$, $X_{187}$, $X_{190}$, $X_{194}$, $X_{198}$, $X_{203}$, $X_{206}$, $X_{268}$, $X_{270}$, $X_{271}$, $X_{272}$, $X_{99a}$, $X_{99b}$, $X_{99c}$, $X_{99d}$, $X_{99e}$, $X_{99f}$, $X_{99g}$, $X_{99h}$, $X_{99i}$, $X_{99j}$, $X_{99k}$, $X_{99l}$, $X_{99m}$, $X_{99n}$, $X_{99o}$, $X_{99p}$ | |||||||||
Curves that minimally cover $X_{99}$ and have infinitely many rational points. | $X_{187}$, $X_{190}$, $X_{194}$, $X_{203}$, $X_{99a}$, $X_{99b}$, $X_{99c}$, $X_{99d}$, $X_{99e}$, $X_{99f}$, $X_{99g}$, $X_{99h}$, $X_{99i}$, $X_{99j}$, $X_{99k}$, $X_{99l}$, $X_{99m}$, $X_{99n}$, $X_{99o}$, $X_{99p}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{99}) = \mathbb{Q}(f_{99}), f_{25} = -f_{99}^{2} - 1\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 4896x - 126293$, with conductor $1989$ | |||||||||
Generic density of odd order reductions | $83/672$ |