| Curve name | $X_{100c}$ | 
| Index | $48$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 1 & 2 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 7 & 6 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 6 \\ 4 & 7 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{100}$ | 
| Curves that $X_{100c}$ minimally covers |  | 
| Curves that minimally cover $X_{100c}$ |  | 
| Curves that minimally cover $X_{100c}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{12} - 108t^{10} + 432t^{6} - 1728t^{2} - 1728\]
\[B(t) = -54t^{18} - 324t^{16} - 324t^{14} + 1512t^{12} + 5184t^{10} + 
10368t^{8} + 12096t^{6} - 10368t^{4} - 41472t^{2} - 27648\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 1164423x - 483563878$, with conductor $8280$ | 
| Generic density of odd order reductions | $635/5376$ |