Curve name | $X_{100}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{25}$ | |||||||||
Curves that $X_{100}$ minimally covers | $X_{25}$, $X_{33}$, $X_{34}$ | |||||||||
Curves that minimally cover $X_{100}$ | $X_{181}$, $X_{182}$, $X_{188}$, $X_{190}$, $X_{247}$, $X_{248}$, $X_{100a}$, $X_{100b}$, $X_{100c}$, $X_{100d}$, $X_{100e}$, $X_{100f}$, $X_{100g}$, $X_{100h}$, $X_{100i}$, $X_{100j}$ | |||||||||
Curves that minimally cover $X_{100}$ and have infinitely many rational points. | $X_{181}$, $X_{188}$, $X_{190}$, $X_{100a}$, $X_{100b}$, $X_{100c}$, $X_{100d}$, $X_{100e}$, $X_{100f}$, $X_{100g}$, $X_{100h}$, $X_{100i}$, $X_{100j}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{100}) = \mathbb{Q}(f_{100}), f_{25} = \frac{2}{f_{100}^{2}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 18759x - 980390$, with conductor $5544$ | |||||||||
Generic density of odd order reductions | $643/5376$ |