Curve name | $X_{107}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 15 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 13 & 13 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{39}$ | ||||||||||||
Curves that $X_{107}$ minimally covers | $X_{39}$ | ||||||||||||
Curves that minimally cover $X_{107}$ | $X_{214}$, $X_{222}$, $X_{224}$, $X_{237}$, $X_{281}$, $X_{287}$, $X_{307}$, $X_{308}$, $X_{362}$, $X_{372}$, $X_{374}$, $X_{399}$ | ||||||||||||
Curves that minimally cover $X_{107}$ and have infinitely many rational points. | $X_{214}$, $X_{222}$, $X_{224}$, $X_{237}$, $X_{281}$, $X_{308}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{107}) = \mathbb{Q}(f_{107}), f_{39} = 8f_{107}^{2} - 4\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 22402x + 539748$, with conductor $3038$ | ||||||||||||
Generic density of odd order reductions | $85091/344064$ |