The modular curve $X_{214}$

Curve name $X_{214}$
Index $48$
Level $16$
Genus $0$
Does the subgroup contain $-I$? Yes
Generating matrices $ \left[ \begin{matrix} 3 & 0 \\ 0 & 13 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 2 & 9 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $6$ $X_{8}$
$4$ $12$ $X_{24}$
$8$ $24$ $X_{66}$
Meaning/Special name
Chosen covering $X_{66}$
Curves that $X_{214}$ minimally covers $X_{66}$, $X_{105}$, $X_{107}$
Curves that minimally cover $X_{214}$ $X_{214a}$, $X_{214b}$, $X_{214c}$, $X_{214d}$
Curves that minimally cover $X_{214}$ and have infinitely many rational points. $X_{214a}$, $X_{214b}$, $X_{214c}$, $X_{214d}$
Model \[\mathbb{P}^{1}, \mathbb{Q}(X_{214}) = \mathbb{Q}(f_{214}), f_{66} = \frac{8f_{214} + 8}{f_{214}^{2} - 2}\]
Info about rational points None
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - 10706425x - 10586268000$, with conductor $421600$
Generic density of odd order reductions $9249/57344$

Back to the 2-adic image homepage.