Curve name | $X_{108a}$ | |||||||||||||||
Index | $48$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 10 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 14 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 10 & 21 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{108}$ | |||||||||||||||
Curves that $X_{108a}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{108a}$ | ||||||||||||||||
Curves that minimally cover $X_{108a}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 54t^{20} - 216t^{19} - 6912t^{18} - 24624t^{17} + 87480t^{16} + 808704t^{15} + 1689984t^{14} - 2778624t^{13} - 22814784t^{12} - 53450496t^{11} - 47402496t^{10} + 61309440t^{9} + 266727168t^{8} + 446570496t^{7} + 468633600t^{6} + 334430208t^{5} + 163524096t^{4} + 53250048t^{3} + 10838016t^{2} + 1216512t + 55296\] \[B(t) = 540t^{30} + 8424t^{29} + 27864t^{28} - 229824t^{27} - 1932336t^{26} - 1796256t^{25} + 30878496t^{24} + 121678848t^{23} - 70279488t^{22} - 1630088064t^{21} - 3708270720t^{20} + 5403718656t^{19} + 49006487808t^{18} + 109890805248t^{17} + 9524169216t^{16} - 648125743104t^{15} - 2228816342016t^{14} - 4541579642880t^{13} - 6586419640320t^{12} - 7132383756288t^{11} - 5773489311744t^{10} - 3339683094528t^{9} - 1154721816576t^{8} + 26435911680t^{7} + 319026511872t^{6} + 220668198912t^{5} + 88345313280t^{4} + 23137615872t^{3} + 3922919424t^{2} + 392822784t + 17694720\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 12870589x - 17772297531$, with conductor $21632$ | |||||||||||||||
Generic density of odd order reductions | $2722915/11010048$ |