Curve name | $X_{108}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 11 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 10 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 14 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{42}$ | ||||||||||||
Curves that $X_{108}$ minimally covers | $X_{42}$ | ||||||||||||
Curves that minimally cover $X_{108}$ | $X_{238}$, $X_{108a}$, $X_{108b}$, $X_{108c}$, $X_{108d}$, $X_{108e}$, $X_{108f}$ | ||||||||||||
Curves that minimally cover $X_{108}$ and have infinitely many rational points. | $X_{238}$, $X_{108a}$, $X_{108b}$, $X_{108c}$, $X_{108d}$, $X_{108e}$, $X_{108f}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{108}) = \mathbb{Q}(f_{108}), f_{42} = \frac{8f_{108} + 8}{f_{108}^{2} - 2}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 31x - 8169$, with conductor $10880$ | ||||||||||||
Generic density of odd order reductions | $85091/344064$ |