Curve name | $X_{108d}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 15 & 15 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 2 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{108}$ | ||||||||||||
Curves that $X_{108d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{108d}$ | |||||||||||||
Curves that minimally cover $X_{108d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 54t^{16} - 432t^{15} - 5616t^{14} + 864t^{13} + 132192t^{12} + 319680t^{11} - 630720t^{10} - 3874176t^{9} - 5358528t^{8} + 2744064t^{7} + 18005760t^{6} + 25698816t^{5} + 19367424t^{4} + 8487936t^{3} + 2128896t^{2} + 276480t + 13824\] \[B(t) = 540t^{24} + 5184t^{23} - 12960t^{22} - 262656t^{21} - 308448t^{20} + 4997376t^{19} + 15189120t^{18} - 39813120t^{17} - 247209408t^{16} - 86648832t^{15} + 1871133696t^{14} + 4676050944t^{13} - 223921152t^{12} - 23439974400t^{11} - 58742599680t^{10} - 79136980992t^{9} - 65681611776t^{8} - 31456346112t^{7} - 3944816640t^{6} + 5584453632t^{5} + 4380106752t^{4} + 1633222656t^{3} + 353009664t^{2} + 42467328t + 2211840\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 19039x - 1017759$, with conductor $1664$ | ||||||||||||
Generic density of odd order reductions | $12833/57344$ |