Curve name | $X_{108e}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 14 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 15 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{108}$ | ||||||||||||
Curves that $X_{108e}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{108e}$ | |||||||||||||
Curves that minimally cover $X_{108e}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 216t^{16} - 1728t^{15} - 22464t^{14} + 3456t^{13} + 528768t^{12} + 1278720t^{11} - 2522880t^{10} - 15496704t^{9} - 21434112t^{8} + 10976256t^{7} + 72023040t^{6} + 102795264t^{5} + 77469696t^{4} + 33951744t^{3} + 8515584t^{2} + 1105920t + 55296\] \[B(t) = -4320t^{24} - 41472t^{23} + 103680t^{22} + 2101248t^{21} + 2467584t^{20} - 39979008t^{19} - 121512960t^{18} + 318504960t^{17} + 1977675264t^{16} + 693190656t^{15} - 14969069568t^{14} - 37408407552t^{13} + 1791369216t^{12} + 187519795200t^{11} + 469940797440t^{10} + 633095847936t^{9} + 525452894208t^{8} + 251650768896t^{7} + 31558533120t^{6} - 44675629056t^{5} - 35040854016t^{4} - 13065781248t^{3} - 2824077312t^{2} - 339738624t - 17694720\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 76157x + 8065915$, with conductor $1664$ | ||||||||||||
Generic density of odd order reductions | $45667/172032$ |