Curve name | $X_{108f}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 2 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 15 & 15 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{108}$ | ||||||||||||
Curves that $X_{108f}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{108f}$ | |||||||||||||
Curves that minimally cover $X_{108f}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 216t^{16} - 1728t^{15} - 22464t^{14} + 3456t^{13} + 528768t^{12} + 1278720t^{11} - 2522880t^{10} - 15496704t^{9} - 21434112t^{8} + 10976256t^{7} + 72023040t^{6} + 102795264t^{5} + 77469696t^{4} + 33951744t^{3} + 8515584t^{2} + 1105920t + 55296\] \[B(t) = 4320t^{24} + 41472t^{23} - 103680t^{22} - 2101248t^{21} - 2467584t^{20} + 39979008t^{19} + 121512960t^{18} - 318504960t^{17} - 1977675264t^{16} - 693190656t^{15} + 14969069568t^{14} + 37408407552t^{13} - 1791369216t^{12} - 187519795200t^{11} - 469940797440t^{10} - 633095847936t^{9} - 525452894208t^{8} - 251650768896t^{7} - 31558533120t^{6} + 44675629056t^{5} + 35040854016t^{4} + 13065781248t^{3} + 2824077312t^{2} + 339738624t + 17694720\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 76157x - 8065915$, with conductor $1664$ | ||||||||||||
Generic density of odd order reductions | $45667/172032$ |