| Curve name |
$X_{114}$ |
| Index |
$24$ |
| Level |
$16$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
Yes |
| Generating matrices |
$
\left[ \begin{matrix} 1 & 3 \\ 12 & 3 \end{matrix}\right],
\left[ \begin{matrix} 1 & 3 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right],
\left[ \begin{matrix} 1 & 2 \\ 0 & 13 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{50}$ |
| Curves that $X_{114}$ minimally covers |
$X_{50}$ |
| Curves that minimally cover $X_{114}$ |
$X_{280}$, $X_{291}$, $X_{318}$, $X_{319}$, $X_{327}$, $X_{350}$ |
| Curves that minimally cover $X_{114}$ and have infinitely many rational
points. |
$X_{291}$, $X_{318}$, $X_{350}$ |
| Model |
\[\mathbb{P}^{1}, \mathbb{Q}(X_{114}) = \mathbb{Q}(f_{114}), f_{50} =
\frac{-2}{f_{114}^{2}}\] |
| Info about rational points |
None |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 + xy + y = x^3 - x^2 - 5435x + 157611$, with conductor $2093058$ |
| Generic density of odd order reductions |
$85091/344064$ |