Curve name | $X_{114}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 3 \\ 12 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 13 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{50}$ | ||||||||||||
Curves that $X_{114}$ minimally covers | $X_{50}$ | ||||||||||||
Curves that minimally cover $X_{114}$ | $X_{280}$, $X_{291}$, $X_{318}$, $X_{319}$, $X_{327}$, $X_{350}$ | ||||||||||||
Curves that minimally cover $X_{114}$ and have infinitely many rational points. | $X_{291}$, $X_{318}$, $X_{350}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{114}) = \mathbb{Q}(f_{114}), f_{50} = \frac{-2}{f_{114}^{2}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 5435x + 157611$, with conductor $2093058$ | ||||||||||||
Generic density of odd order reductions | $85091/344064$ |