Curve name | $X_{118o}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{118}$ | ||||||||||||
Curves that $X_{118o}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{118o}$ | |||||||||||||
Curves that minimally cover $X_{118o}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{12} + 864t^{10} - 13824t^{6} + 25920t^{4} + 13824t^{2} - 27648\] \[B(t) = -432t^{18} + 5184t^{16} - 10368t^{14} - 96768t^{12} + 445824t^{10} - 41472t^{8} - 2515968t^{6} + 3649536t^{4} - 1327104t^{2} + 1769472\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 71370x + 8011575$, with conductor $585$ | ||||||||||||
Generic density of odd order reductions | $25/224$ |