Curve name | $X_{119m}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{119}$ | ||||||||||||
Curves that $X_{119m}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{119m}$ | |||||||||||||
Curves that minimally cover $X_{119m}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} - 1080t^{14} - 18144t^{12} - 165888t^{10} - 892080t^{8} - 2830464t^{6} - 4955904t^{4} - 3870720t^{2} - 442368\] \[B(t) = 54t^{24} + 3240t^{22} + 86832t^{20} + 1370304t^{18} + 14127696t^{16} + 99734976t^{14} + 490783104t^{12} + 1677749760t^{10} + 3883935744t^{8} + 5743927296t^{6} + 4782882816t^{4} + 1571291136t^{2} - 113246208\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 2880300x + 1881502000$, with conductor $14400$ | ||||||||||||
Generic density of odd order reductions | $41/336$ |