Curve name | $X_{120a}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 8 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{120}$ | ||||||||||||
Curves that $X_{120a}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{120a}$ | |||||||||||||
Curves that minimally cover $X_{120a}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{8} + 1728t^{6} - 8640t^{4} + 13824t^{2} - 1728\] \[B(t) = -432t^{12} + 10368t^{10} - 93312t^{8} + 387072t^{6} - 715392t^{4} + 414720t^{2} + 27648\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 63x + 63$, with conductor $1344$ | ||||||||||||
Generic density of odd order reductions | $193/1792$ |