Curve name | $X_{120d}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{120}$ | ||||||||||||
Curves that $X_{120d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{120d}$ | |||||||||||||
Curves that minimally cover $X_{120d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{8} + 432t^{6} - 2160t^{4} + 3456t^{2} - 432\] \[B(t) = 54t^{12} - 1296t^{10} + 11664t^{8} - 48384t^{6} + 89424t^{4} - 51840t^{2} - 3456\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x$, with conductor $21$ | ||||||||||||
Generic density of odd order reductions | $5/84$ |