Curve name | $X_{121g}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{121}$ | ||||||||||||
Curves that $X_{121g}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{121g}$ | |||||||||||||
Curves that minimally cover $X_{121g}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{12} - 1728t^{10} - 10800t^{8} - 32832t^{6} - 48492t^{4} - 28512t^{2} - 1728\] \[B(t) = -432t^{18} - 10368t^{16} - 106272t^{14} - 604800t^{12} - 2076840t^{10} - 4364928t^{8} - 5397840t^{6} - 3478464t^{4} - 808704t^{2} + 27648\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 1533x - 22563$, with conductor $4800$ | ||||||||||||
Generic density of odd order reductions | $691/5376$ |