The modular curve $X_{121i}$

Curve name $X_{121i}$
Index $48$
Level $16$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 3 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $6$ $X_{13}$
$8$ $24$ $X_{36s}$
Meaning/Special name
Chosen covering $X_{121}$
Curves that $X_{121i}$ minimally covers
Curves that minimally cover $X_{121i}$
Curves that minimally cover $X_{121i}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{12} - 324t^{10} - 1512t^{8} - 3456t^{6} - 3915t^{4} - 1836t^{2} - 108\] \[B(t) = -54t^{18} - 972t^{16} - 7452t^{14} - 31752t^{12} - 82053t^{10} - 131058t^{8} - 125118t^{6} - 63828t^{4} - 12312t^{2} + 432\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - 138x - 623$, with conductor $360$
Generic density of odd order reductions $691/5376$

Back to the 2-adic image homepage.