| Curve name |
$X_{121i}$ |
| Index |
$48$ |
| Level |
$16$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 5 & 5 \\ 0 & 3 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{121}$ |
| Curves that $X_{121i}$ minimally covers |
|
| Curves that minimally cover $X_{121i}$ |
|
| Curves that minimally cover $X_{121i}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{12} - 324t^{10} - 1512t^{8} - 3456t^{6} - 3915t^{4} - 1836t^{2} -
108\]
\[B(t) = -54t^{18} - 972t^{16} - 7452t^{14} - 31752t^{12} - 82053t^{10} -
131058t^{8} - 125118t^{6} - 63828t^{4} - 12312t^{2} + 432\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 = x^3 - 138x - 623$, with conductor $360$ |
| Generic density of odd order reductions |
$691/5376$ |