Curve name | $X_{121i}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{121}$ | ||||||||||||
Curves that $X_{121i}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{121i}$ | |||||||||||||
Curves that minimally cover $X_{121i}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{12} - 324t^{10} - 1512t^{8} - 3456t^{6} - 3915t^{4} - 1836t^{2} - 108\] \[B(t) = -54t^{18} - 972t^{16} - 7452t^{14} - 31752t^{12} - 82053t^{10} - 131058t^{8} - 125118t^{6} - 63828t^{4} - 12312t^{2} + 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 138x - 623$, with conductor $360$ | ||||||||||||
Generic density of odd order reductions | $691/5376$ |