Curve name | $X_{121o}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{121}$ | ||||||||||||
Curves that $X_{121o}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{121o}$ | |||||||||||||
Curves that minimally cover $X_{121o}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 2160t^{14} - 18144t^{12} - 82944t^{10} - 223020t^{8} - 353808t^{6} - 309744t^{4} - 120960t^{2} - 6912\] \[B(t) = 432t^{24} + 12960t^{22} + 173664t^{20} + 1370304t^{18} + 7063848t^{16} + 24933744t^{14} + 61347888t^{12} + 104859360t^{10} + 121372992t^{8} + 89748864t^{6} + 37366272t^{4} + 6137856t^{2} - 221184\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 13800x + 623000$, with conductor $14400$ | ||||||||||||
Generic density of odd order reductions | $89/672$ |