Curve name | $X_{121p}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{121}$ | ||||||||||||
Curves that $X_{121p}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{121p}$ | |||||||||||||
Curves that minimally cover $X_{121p}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} - 540t^{14} - 4536t^{12} - 20736t^{10} - 55755t^{8} - 88452t^{6} - 77436t^{4} - 30240t^{2} - 1728\] \[B(t) = -54t^{24} - 1620t^{22} - 21708t^{20} - 171288t^{18} - 882981t^{16} - 3116718t^{14} - 7668486t^{12} - 13107420t^{10} - 15171624t^{8} - 11218608t^{6} - 4670784t^{4} - 767232t^{2} + 27648\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 3450x - 77875$, with conductor $1800$ | ||||||||||||
Generic density of odd order reductions | $691/5376$ |