Curve name | X122d | ||||||||||||
Index | 48 | ||||||||||||
Level | 16 | ||||||||||||
Genus | 0 | ||||||||||||
Does the subgroup contain −I? | No | ||||||||||||
Generating matrices | [1181],[5501],[5085],[3001] | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | X122 | ||||||||||||
Curves that X122d minimally covers | |||||||||||||
Curves that minimally cover X122d | |||||||||||||
Curves that minimally cover X122d and have infinitely many rational points. | |||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−6912t8+13824t6−8640t4+1728t2−27 B(t)=221184t12−663552t10+746496t8−387072t6+89424t4−6480t2−54 | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2+xy+y=x3+x2+10x−13, with conductor 210 | ||||||||||||
Generic density of odd order reductions | 47/672 |