The modular curve $X_{122g}$

Curve name $X_{122g}$
Index $48$
Level $16$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 3 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $6$ $X_{13}$
$8$ $24$ $X_{36e}$
Meaning/Special name
Chosen covering $X_{122}$
Curves that $X_{122g}$ minimally covers
Curves that minimally cover $X_{122g}$
Curves that minimally cover $X_{122g}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27648t^{12} + 110592t^{10} - 172800t^{8} + 131328t^{6} - 48492t^{4} + 7128t^{2} - 108\] \[B(t) = 1769472t^{18} - 10616832t^{16} + 27205632t^{14} - 38707200t^{12} + 33229440t^{10} - 17459712t^{8} + 5397840t^{6} - 869616t^{4} + 50544t^{2} + 432\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - 451596x + 116808176$, with conductor $4032$
Generic density of odd order reductions $635/5376$

Back to the 2-adic image homepage.