Curve name | $X_{122h}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{122}$ | ||||||||||||
Curves that $X_{122h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{122h}$ | |||||||||||||
Curves that minimally cover $X_{122h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27648t^{12} + 110592t^{10} - 172800t^{8} + 131328t^{6} - 48492t^{4} + 7128t^{2} - 108\] \[B(t) = -1769472t^{18} + 10616832t^{16} - 27205632t^{14} + 38707200t^{12} - 33229440t^{10} + 17459712t^{8} - 5397840t^{6} + 869616t^{4} - 50544t^{2} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 79110x - 27294894$, with conductor $2070$ | ||||||||||||
Generic density of odd order reductions | $193/1792$ |