Curve name | $X_{122n}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{122}$ | ||||||||||||
Curves that $X_{122n}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{122n}$ | |||||||||||||
Curves that minimally cover $X_{122n}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27648t^{16} + 138240t^{14} - 290304t^{12} + 331776t^{10} - 223020t^{8} + 88452t^{6} - 19359t^{4} + 1890t^{2} - 27\] \[B(t) = 1769472t^{24} - 13271040t^{22} + 44457984t^{20} - 87699456t^{18} + 113021568t^{16} - 99734976t^{14} + 61347888t^{12} - 26214840t^{10} + 7585812t^{8} - 1402326t^{6} + 145962t^{4} - 5994t^{2} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 5532051x + 5008150546$, with conductor $7056$ | ||||||||||||
Generic density of odd order reductions | $41/336$ |