Curve name | X122p | ||||||||||||
Index | 48 | ||||||||||||
Level | 16 | ||||||||||||
Genus | 0 | ||||||||||||
Does the subgroup contain −I? | No | ||||||||||||
Generating matrices | [3303],[3083],[5501],[5007] | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | X122 | ||||||||||||
Curves that X122p minimally covers | |||||||||||||
Curves that minimally cover X122p | |||||||||||||
Curves that minimally cover X122p and have infinitely many rational points. | |||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−110592t16+552960t14−1161216t12+1327104t10−892080t8+353808t6−77436t4+7560t2−108 B(t)=−14155776t24+106168320t22−355663872t20+701595648t18−904172544t16+797879808t14−490783104t12+209718720t10−60686496t8+11218608t6−1167696t4+47952t2+432 | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2=x3−22128204x−40065204368, with conductor 28224 | ||||||||||||
Generic density of odd order reductions | 635/5376 |