Curve name | $X_{123b}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 15 & 15 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 15 & 0 \\ 2 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{123}$ | ||||||||||||
Curves that $X_{123b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{123b}$ | |||||||||||||
Curves that minimally cover $X_{123b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -189t^{16} - 4320t^{15} - 41904t^{14} - 235008t^{13} - 892944t^{12} - 2547072t^{11} - 5711040t^{10} - 9856512t^{9} - 12141792t^{8} - 9220608t^{7} - 2315520t^{6} + 2764800t^{5} + 2965248t^{4} + 940032t^{3} - 193536t^{2} - 221184t - 48384\] \[B(t) = 918t^{24} + 29808t^{23} + 417312t^{22} + 3256416t^{21} + 14760144t^{20} + 30165696t^{19} - 71798400t^{18} - 814271616t^{17} - 3389120352t^{16} - 9109559808t^{15} - 17488825344t^{14} - 24583357440t^{13} - 24853989888t^{12} - 16374638592t^{11} - 3728166912t^{10} + 5567311872t^{9} + 7500335616t^{8} + 4125634560t^{7} + 321822720t^{6} - 1083580416t^{5} - 680472576t^{4} - 100417536t^{3} + 61046784t^{2} + 29196288t + 3760128\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 76162x - 8064798$, with conductor $1664$ | ||||||||||||
Generic density of odd order reductions | $45667/172032$ |