Curve name | $X_{123}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 11 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 13 & 13 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 6 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{37}$ | ||||||||||||
Curves that $X_{123}$ minimally covers | $X_{37}$ | ||||||||||||
Curves that minimally cover $X_{123}$ | $X_{239}$, $X_{123a}$, $X_{123b}$, $X_{123c}$, $X_{123d}$, $X_{123e}$, $X_{123f}$ | ||||||||||||
Curves that minimally cover $X_{123}$ and have infinitely many rational points. | $X_{239}$, $X_{123a}$, $X_{123b}$, $X_{123c}$, $X_{123d}$, $X_{123e}$, $X_{123f}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{123}) = \mathbb{Q}(f_{123}), f_{37} = \frac{f_{123} + 1}{f_{123}^{2} - 2}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 6281x - 186919$, with conductor $10880$ | ||||||||||||
Generic density of odd order reductions | $85091/344064$ |