Curve name | $X_{9}$ | ||||||
Index | $6$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 2 & 1 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | Elliptic curves that acquire a cyclic $4$-isogeny over $\mathbb{Q}(i)$ | ||||||
Chosen covering | $X_{6}$ | ||||||
Curves that $X_{9}$ minimally covers | $X_{6}$ | ||||||
Curves that minimally cover $X_{9}$ | $X_{24}$, $X_{37}$, $X_{9a}$, $X_{9b}$, $X_{9c}$, $X_{9d}$ | ||||||
Curves that minimally cover $X_{9}$ and have infinitely many rational points. | $X_{24}$, $X_{37}$, $X_{9a}$, $X_{9b}$, $X_{9c}$, $X_{9d}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{9}) = \mathbb{Q}(f_{9}), f_{6} = f_{9}^{2} + 48\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 12x - 11$, with conductor $180$ | ||||||
Generic density of odd order reductions | $83/336$ |