| Curve name | $X_{154}$ | 
| Index | $24$ | 
| Level | $16$ | 
| Genus | $1$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 1 & 3 \\ 12 & 3 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right],
\left[ \begin{matrix} 1 & 3 \\ 14 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 2 \\ 0 & 13 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{50}$ | 
| Curves that $X_{154}$ minimally covers | $X_{50}$ | 
| Curves that minimally cover $X_{154}$ | $X_{280}$, $X_{317}$, $X_{327}$, $X_{348}$, $X_{412}$, $X_{413}$, $X_{414}$, $X_{416}$ | 
| Curves that minimally cover $X_{154}$ and have infinitely many rational 
points. |  | 
| Model | \[y^2 = x^3 - 8x\] | 
| Info about rational points | 
| Rational point | Image on the $j$-line |  
| $(0 : 1 : 0)$ | \[ \infty \] |  
| $(0 : 0 : 1)$ | \[ \infty \] |  | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | None | 
| Generic density of odd order reductions | N/A |