Curve name | $X_{181d}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{181}$ | |||||||||
Curves that $X_{181d}$ minimally covers | ||||||||||
Curves that minimally cover $X_{181d}$ | ||||||||||
Curves that minimally cover $X_{181d}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7421703487488t^{24} - 18554258718720t^{22} - 16930761080832t^{20} - 6551972610048t^{18} - 1244802318336t^{16} - 588880281600t^{14} - 242686623744t^{12} - 9201254400t^{10} - 303906816t^{8} - 24993792t^{6} - 1009152t^{4} - 17280t^{2} - 108\] \[B(t) = -7782220156096217088t^{36} - 29183325585360814080t^{34} - 44869363087492251648t^{32} - 35992768221945004032t^{30} - 14705660158248222720t^{28} - 678284325128503296t^{26} + 2579309143227629568t^{24} + 1308832253425483776t^{22} + 237053847955046400t^{20} + 12907038149443584t^{18} + 3703966374297600t^{16} + 319539124371456t^{14} + 9839283535872t^{12} - 40428896256t^{10} - 13695713280t^{8} - 523763712t^{6} - 10202112t^{4} - 103680t^{2} - 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 2108929x + 972923809$, with conductor $55488$ | |||||||||
Generic density of odd order reductions | $109/896$ |