Curve name | $X_{181}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{87}$ | |||||||||
Curves that $X_{181}$ minimally covers | $X_{87}$, $X_{98}$, $X_{100}$ | |||||||||
Curves that minimally cover $X_{181}$ | $X_{448}$, $X_{450}$, $X_{455}$, $X_{459}$, $X_{181a}$, $X_{181b}$, $X_{181c}$, $X_{181d}$, $X_{181e}$, $X_{181f}$, $X_{181g}$, $X_{181h}$ | |||||||||
Curves that minimally cover $X_{181}$ and have infinitely many rational points. | $X_{181a}$, $X_{181b}$, $X_{181c}$, $X_{181d}$, $X_{181e}$, $X_{181f}$, $X_{181g}$, $X_{181h}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{181}) = \mathbb{Q}(f_{181}), f_{87} = \frac{f_{181}^{2} - \frac{1}{8}}{f_{181}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 1026x + 10692$, with conductor $306$ | |||||||||
Generic density of odd order reductions | $635/5376$ |