Curve name | $X_{181g}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{181}$ | |||||||||
Curves that $X_{181g}$ minimally covers | ||||||||||
Curves that minimally cover $X_{181g}$ | ||||||||||
Curves that minimally cover $X_{181g}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1811939328t^{16} - 1811939328t^{14} - 339738624t^{12} + 28311552t^{10} - 101744640t^{8} + 442368t^{6} - 82944t^{4} - 6912t^{2} - 108\] \[B(t) = -29686813949952t^{24} - 44530220924928t^{22} - 19481971654656t^{20} - 1623497637888t^{18} + 4065991852032t^{16} + 1891664658432t^{14} - 117323071488t^{12} + 29557260288t^{10} + 992673792t^{8} - 6193152t^{6} - 1161216t^{4} - 41472t^{2} - 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 7297x + 195455$, with conductor $3264$ | |||||||||
Generic density of odd order reductions | $271/2688$ |