| Curve name |
$X_{183a}$ |
| Index |
$96$ |
| Level |
$8$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 3 & 4 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 4 \\ 2 & 3 \end{matrix}\right],
\left[ \begin{matrix} 3 & 4 \\ 4 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 4 \\ 6 & 3 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{183}$ |
| Curves that $X_{183a}$ minimally covers |
|
| Curves that minimally cover $X_{183a}$ |
|
| Curves that minimally cover $X_{183a}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -108t^{24} - 216t^{20} - 1620t^{16} - 3024t^{12} - 1620t^{8} - 216t^{4}
- 108\]
\[B(t) = 432t^{36} + 1296t^{32} - 12960t^{28} - 42336t^{24} - 57024t^{20} -
57024t^{16} - 42336t^{12} - 12960t^{8} + 1296t^{4} + 432\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 = x^3 - x^2 - 26634625x + 42533130625$, with conductor $277440$ |
| Generic density of odd order reductions |
$5/42$ |