The modular curve $X_{183a}$

Curve name $X_{183a}$
Index $96$
Level $8$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 3 & 4 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 4 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 4 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 6 & 3 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $6$ $X_{8}$
$4$ $24$ $X_{58}$
Meaning/Special name
Chosen covering $X_{183}$
Curves that $X_{183a}$ minimally covers
Curves that minimally cover $X_{183a}$
Curves that minimally cover $X_{183a}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} - 216t^{20} - 1620t^{16} - 3024t^{12} - 1620t^{8} - 216t^{4} - 108\] \[B(t) = 432t^{36} + 1296t^{32} - 12960t^{28} - 42336t^{24} - 57024t^{20} - 57024t^{16} - 42336t^{12} - 12960t^{8} + 1296t^{4} + 432\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - x^2 - 26634625x + 42533130625$, with conductor $277440$
Generic density of odd order reductions $5/42$

Back to the 2-adic image homepage.