Curve name | $X_{183}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 4 \\ 6 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{58}$ | |||||||||
Curves that $X_{183}$ minimally covers | $X_{58}$, $X_{87}$, $X_{101}$ | |||||||||
Curves that minimally cover $X_{183}$ | $X_{446}$, $X_{447}$, $X_{450}$, $X_{452}$, $X_{454}$, $X_{458}$, $X_{183a}$, $X_{183b}$, $X_{183c}$, $X_{183d}$, $X_{183e}$, $X_{183f}$, $X_{183g}$, $X_{183h}$, $X_{183i}$, $X_{183j}$, $X_{183k}$, $X_{183l}$ | |||||||||
Curves that minimally cover $X_{183}$ and have infinitely many rational points. | $X_{183a}$, $X_{183b}$, $X_{183c}$, $X_{183d}$, $X_{183e}$, $X_{183f}$, $X_{183g}$, $X_{183h}$, $X_{183i}$, $X_{183j}$, $X_{183k}$, $X_{183l}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{183}) = \mathbb{Q}(f_{183}), f_{58} = -f_{183}^{2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 12960x - 453200$, with conductor $1530$ | |||||||||
Generic density of odd order reductions | $25/224$ |