Curve name | $X_{183j}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 4 \\ 6 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{183}$ | |||||||||
Curves that $X_{183j}$ minimally covers | ||||||||||
Curves that minimally cover $X_{183j}$ | ||||||||||
Curves that minimally cover $X_{183j}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} - 216t^{20} - 1620t^{16} - 3024t^{12} - 1620t^{8} - 216t^{4} - 108\] \[B(t) = -432t^{36} - 1296t^{32} + 12960t^{28} + 42336t^{24} + 57024t^{20} + 57024t^{16} + 42336t^{12} + 12960t^{8} - 1296t^{4} - 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 94421805x - 350257542975$, with conductor $50430$ | |||||||||
Generic density of odd order reductions | $11/112$ |