Curve name | $X_{183l}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 4 \\ 6 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 6 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 2 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{183}$ | |||||||||
Curves that $X_{183l}$ minimally covers | ||||||||||
Curves that minimally cover $X_{183l}$ | ||||||||||
Curves that minimally cover $X_{183l}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{24} - 54t^{20} - 405t^{16} - 756t^{12} - 405t^{8} - 54t^{4} - 27\] \[B(t) = -54t^{36} - 162t^{32} + 1620t^{28} + 5292t^{24} + 7128t^{20} + 7128t^{16} + 5292t^{12} + 1620t^{8} - 162t^{4} - 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 6658656x - 5313312000$, with conductor $69360$ | |||||||||
Generic density of odd order reductions | $109/896$ |