| Curve name | $X_{187a}$ | 
| Index | $96$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 5 & 4 \\ 2 & 3 \end{matrix}\right],
\left[ \begin{matrix} 3 & 4 \\ 2 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 4 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 3 & 4 \\ 6 & 1 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{187}$ | 
| Curves that $X_{187a}$ minimally covers |  | 
| Curves that minimally cover $X_{187a}$ |  | 
| Curves that minimally cover $X_{187a}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -108t^{24} - 864t^{20} - 25920t^{16} - 193536t^{12} - 414720t^{8} - 
221184t^{4} - 442368\]
\[B(t) = 432t^{36} + 5184t^{32} - 207360t^{28} - 2709504t^{24} - 14598144t^{20} 
- 58392576t^{16} - 173408256t^{12} - 212336640t^{8} + 84934656t^{4} + 
113246208\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 16033x - 356063$, with conductor $4800$ | 
| Generic density of odd order reductions | $109/896$ |