Curve name | $X_{187}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 4 \\ 6 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 6 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{58}$ | |||||||||
Curves that $X_{187}$ minimally covers | $X_{58}$, $X_{98}$, $X_{99}$ | |||||||||
Curves that minimally cover $X_{187}$ | $X_{449}$, $X_{454}$, $X_{457}$, $X_{459}$, $X_{460}$, $X_{465}$, $X_{187a}$, $X_{187b}$, $X_{187c}$, $X_{187d}$, $X_{187e}$, $X_{187f}$, $X_{187g}$, $X_{187h}$, $X_{187i}$, $X_{187j}$, $X_{187k}$, $X_{187l}$ | |||||||||
Curves that minimally cover $X_{187}$ and have infinitely many rational points. | $X_{187a}$, $X_{187b}$, $X_{187c}$, $X_{187d}$, $X_{187e}$, $X_{187f}$, $X_{187g}$, $X_{187h}$, $X_{187i}$, $X_{187j}$, $X_{187k}$, $X_{187l}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{187}) = \mathbb{Q}(f_{187}), f_{58} = \frac{-2}{f_{187}^{2}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 491x + 1896$, with conductor $735$ | |||||||||
Generic density of odd order reductions | $25/224$ |