| Curve name | 
$X_{187}$ | 
| Index | 
$48$ | 
| Level | 
$8$ | 
| Genus | 
$0$ | 
| Does the subgroup contain $-I$? | 
Yes | 
| Generating matrices | 
$
\left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 4 \\ 6 & 5 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 6 & 1 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{58}$ | 
| Curves that $X_{187}$ minimally covers  | 
$X_{58}$, $X_{98}$, $X_{99}$ | 
| Curves that minimally cover $X_{187}$ | 
$X_{449}$, $X_{454}$, $X_{457}$, $X_{459}$, $X_{460}$, $X_{465}$, $X_{187a}$, $X_{187b}$, $X_{187c}$, $X_{187d}$, $X_{187e}$, $X_{187f}$, $X_{187g}$, $X_{187h}$, $X_{187i}$, $X_{187j}$, $X_{187k}$, $X_{187l}$ | 
| Curves that minimally cover $X_{187}$ and have infinitely many rational 
points. | 
$X_{187a}$, $X_{187b}$, $X_{187c}$, $X_{187d}$, $X_{187e}$, $X_{187f}$, $X_{187g}$, $X_{187h}$, $X_{187i}$, $X_{187j}$, $X_{187k}$, $X_{187l}$ | 
| Model | 
\[\mathbb{P}^{1}, \mathbb{Q}(X_{187}) = \mathbb{Q}(f_{187}), f_{58} = 
\frac{-2}{f_{187}^{2}}\] | 
| Info about rational points | 
None | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
$y^2 + xy = x^3 - 491x + 1896$, with conductor $735$ | 
| Generic density of odd order reductions | 
$25/224$ |