Curve name | $X_{187c}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 4 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 4 \\ 6 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{187}$ | |||||||||
Curves that $X_{187c}$ minimally covers | ||||||||||
Curves that minimally cover $X_{187c}$ | ||||||||||
Curves that minimally cover $X_{187c}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{32} - 5184t^{24} + 179712t^{16} - 1327104t^{8} - 1769472\] \[B(t) = 54t^{48} - 31104t^{40} + 953856t^{32} - 244187136t^{16} + 2038431744t^{8} - 905969664\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 2255x + 19622$, with conductor $225$ | |||||||||
Generic density of odd order reductions | $299/2688$ |