Curve name | $X_{187g}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 4 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 4 \\ 6 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 6 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{187}$ | |||||||||
Curves that $X_{187g}$ minimally covers | ||||||||||
Curves that minimally cover $X_{187g}$ | ||||||||||
Curves that minimally cover $X_{187g}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{24} + 216t^{20} - 6480t^{16} + 48384t^{12} - 103680t^{8} + 55296t^{4} - 110592\] \[B(t) = 54t^{36} - 648t^{32} - 25920t^{28} + 338688t^{24} - 1824768t^{20} + 7299072t^{16} - 21676032t^{12} + 26542080t^{8} + 10616832t^{4} - 14155776\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 90x + 175$, with conductor $45$ | |||||||||
Generic density of odd order reductions | $299/2688$ |