The modular curve $X_{187l}$

Curve name $X_{187l}$
Index $96$
Level $8$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 4 \\ 6 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 6 & 1 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $6$ $X_{8}$
$4$ $24$ $X_{58}$
Meaning/Special name
Chosen covering $X_{187}$
Curves that $X_{187l}$ minimally covers
Curves that minimally cover $X_{187l}$
Curves that minimally cover $X_{187l}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} - 864t^{20} - 25920t^{16} - 193536t^{12} - 414720t^{8} - 221184t^{4} - 442368\] \[B(t) = -432t^{36} - 5184t^{32} + 207360t^{28} + 2709504t^{24} + 14598144t^{20} + 58392576t^{16} + 173408256t^{12} + 212336640t^{8} - 84934656t^{4} - 113246208\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 + x^2 - 16033x + 356063$, with conductor $4800$
Generic density of odd order reductions $271/2688$

Back to the 2-adic image homepage.