Curve name | $X_{187l}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 4 \\ 6 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 6 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{187}$ | |||||||||
Curves that $X_{187l}$ minimally covers | ||||||||||
Curves that minimally cover $X_{187l}$ | ||||||||||
Curves that minimally cover $X_{187l}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} - 864t^{20} - 25920t^{16} - 193536t^{12} - 414720t^{8} - 221184t^{4} - 442368\] \[B(t) = -432t^{36} - 5184t^{32} + 207360t^{28} + 2709504t^{24} + 14598144t^{20} + 58392576t^{16} + 173408256t^{12} + 212336640t^{8} - 84934656t^{4} - 113246208\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 16033x + 356063$, with conductor $4800$ | |||||||||
Generic density of odd order reductions | $271/2688$ |