| Curve name | 
$X_{187l}$ | 
| Index | 
$96$ | 
| Level | 
$8$ | 
| Genus | 
$0$ | 
| Does the subgroup contain $-I$? | 
No | 
| Generating matrices | 
$
\left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 3 & 4 \\ 6 & 5 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 6 & 1 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{187}$ | 
| Curves that $X_{187l}$ minimally covers  | 
 | 
| Curves that minimally cover $X_{187l}$ | 
 | 
| Curves that minimally cover $X_{187l}$ and have infinitely many rational 
points. | 
 | 
| Model | 
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -108t^{24} - 864t^{20} - 25920t^{16} - 193536t^{12} - 414720t^{8} - 
221184t^{4} - 442368\]
\[B(t) = -432t^{36} - 5184t^{32} + 207360t^{28} + 2709504t^{24} + 14598144t^{20}
+ 58392576t^{16} + 173408256t^{12} + 212336640t^{8} - 84934656t^{4} - 
113246208\]
 | 
| Info about rational points | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
$y^2 = x^3 + x^2 - 16033x + 356063$, with conductor $4800$ | 
| Generic density of odd order reductions | 
$271/2688$ |