| Curve name | $X_{188f}$ | 
| Index | $96$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 3 & 6 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{188}$ | 
| Curves that $X_{188f}$ minimally covers |  | 
| Curves that minimally cover $X_{188f}$ |  | 
| Curves that minimally cover $X_{188f}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -108t^{24} + 4320t^{22} - 63072t^{20} + 390528t^{18} - 1187136t^{16} + 
8985600t^{14} - 59249664t^{12} + 35942400t^{10} - 18994176t^{8} + 24993792t^{6} 
- 16146432t^{4} + 4423680t^{2} - 442368\]
\[B(t) = -432t^{36} + 25920t^{34} - 637632t^{32} + 8183808t^{30} - 
53498880t^{28} + 39481344t^{26} + 2402168832t^{24} - 19503120384t^{22} + 
56518041600t^{20} - 49236443136t^{18} + 226072166400t^{16} - 312049926144t^{14} 
+ 153738805248t^{12} + 10107224064t^{10} - 54782853120t^{8} + 33520877568t^{6} -
10446962688t^{4} + 1698693120t^{2} - 113246208\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 263489x + 51927231$, with conductor $9408$ | 
| Generic density of odd order reductions | $271/2688$ |