Curve name | $X_{188f}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{188}$ | |||||||||
Curves that $X_{188f}$ minimally covers | ||||||||||
Curves that minimally cover $X_{188f}$ | ||||||||||
Curves that minimally cover $X_{188f}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} + 4320t^{22} - 63072t^{20} + 390528t^{18} - 1187136t^{16} + 8985600t^{14} - 59249664t^{12} + 35942400t^{10} - 18994176t^{8} + 24993792t^{6} - 16146432t^{4} + 4423680t^{2} - 442368\] \[B(t) = -432t^{36} + 25920t^{34} - 637632t^{32} + 8183808t^{30} - 53498880t^{28} + 39481344t^{26} + 2402168832t^{24} - 19503120384t^{22} + 56518041600t^{20} - 49236443136t^{18} + 226072166400t^{16} - 312049926144t^{14} + 153738805248t^{12} + 10107224064t^{10} - 54782853120t^{8} + 33520877568t^{6} - 10446962688t^{4} + 1698693120t^{2} - 113246208\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 263489x + 51927231$, with conductor $9408$ | |||||||||
Generic density of odd order reductions | $271/2688$ |