Curve name | $X_{188h}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{188}$ | |||||||||
Curves that $X_{188h}$ minimally covers | ||||||||||
Curves that minimally cover $X_{188h}$ | ||||||||||
Curves that minimally cover $X_{188h}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} + 1728t^{14} - 5184t^{12} - 6912t^{10} - 397440t^{8} - 27648t^{6} - 82944t^{4} + 110592t^{2} - 27648\] \[B(t) = -432t^{24} + 10368t^{22} - 72576t^{20} + 96768t^{18} + 3877632t^{16} - 28864512t^{14} - 28643328t^{12} - 115458048t^{10} + 62042112t^{8} + 6193152t^{6} - 18579456t^{4} + 10616832t^{2} - 1769472\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 5377x - 149855$, with conductor $1344$ | |||||||||
Generic density of odd order reductions | $271/2688$ |