Curve name | $X_{189a}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 4 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 6 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{189}$ | |||||||||
Curves that $X_{189a}$ minimally covers | ||||||||||
Curves that minimally cover $X_{189a}$ | ||||||||||
Curves that minimally cover $X_{189a}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{30} - 6480t^{29} - 178416t^{28} - 2975616t^{27} - 33723648t^{26} - 281788416t^{25} - 1914734592t^{24} - 11913854976t^{23} - 71244693504t^{22} - 373498380288t^{21} - 1456889462784t^{20} - 3127591305216t^{19} + 3507376619520t^{18} + 56277929558016t^{17} + 221308004597760t^{16} + 450223436464128t^{15} + 224472103649280t^{14} - 1601326748270592t^{13} - 5967419239563264t^{12} - 12238794925277184t^{11} - 18676368933912576t^{10} - 24985164790628352t^{9} - 32123915832655872t^{8} - 37821000972238848t^{7} - 36210491315453952t^{6} - 25560346810908672t^{5} - 12260654161330176t^{4} - 3562417673994240t^{3} - 474989023199232t^{2}\] \[B(t) = 432t^{45} + 38880t^{44} + 1653696t^{43} + 44136576t^{42} + 823592448t^{41} + 11235926016t^{40} + 111950622720t^{39} + 751866126336t^{38} + 2004964835328t^{37} - 25262826061824t^{36} - 438158780006400t^{35} - 3850950467911680t^{34} - 23333660799270912t^{33} - 101170906172227584t^{32} - 289184878040186880t^{31} - 288135579445493760t^{30} + 2067625456781230080t^{29} + 14064993346057666560t^{28} + 49907810542647508992t^{27} + 119739588348368388096t^{26} + 184523079839391940608t^{25} - 1476184638715135524864t^{23} - 7663333654295576838144t^{22} - 25552798997835524603904t^{21} - 57610212745452202229760t^{20} - 67751950967807347261440t^{19} + 75533013338159516221440t^{18} + 606464645351733995765760t^{17} + 1697366145767195377926144t^{16} + 3131790938400805865127936t^{15} + 4134926579549140754104320t^{14} + 3763755261165493341388800t^{13} + 1736048187841128865726464t^{12} - 1102241074862564535435264t^{11} - 3306742193749324090834944t^{10} - 3938912365356929557463040t^{9} - 3162632013676253854826496t^{8} - 1854565320958977301807104t^{7} - 795093868908038307446784t^{6} - 238322710060290552102912t^{5} - 44825588099114210426880t^{4} - 3984496719921263149056t^{3}\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 213091788x + 1170570637712$, with conductor $141120$ | |||||||||
Generic density of odd order reductions | $139/1344$ |