Curve name | $X_{189f}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 12 \\ 12 & 11 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 12 & 15 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 6 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{189}$ | ||||||||||||
Curves that $X_{189f}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{189f}$ | |||||||||||||
Curves that minimally cover $X_{189f}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{26} - 1188t^{25} - 23868t^{24} - 287712t^{23} - 2382912t^{22} - 15697152t^{21} - 97804800t^{20} - 602228736t^{19} - 3165585408t^{18} - 11728060416t^{17} - 20960722944t^{16} + 50033590272t^{15} + 492550225920t^{14} + 1704978284544t^{13} + 3005441114112t^{12} + 244158824448t^{11} - 14363696037888t^{10} - 45311166775296t^{9} - 85311539380224t^{8} - 122414620999680t^{7} - 158725885132800t^{6} - 202125455917056t^{5} - 230768592814080t^{4} - 203169132969984t^{3} - 122458107543552t^{2} - 44530220924928t - 7421703487488\] \[B(t) = 54t^{39} + 3564t^{38} + 110808t^{37} + 2150928t^{36} + 28631232t^{35} + 262414080t^{34} + 1433465856t^{33} - 203461632t^{32} - 95798329344t^{31} - 1119878479872t^{30} - 7908547166208t^{29} - 38634407460864t^{28} - 126787892281344t^{27} - 201115922595840t^{26} + 518215553777664t^{25} + 5016170797203456t^{24} + 19872910248247296t^{23} + 51908887229497344t^{22} + 91108353660420096t^{21} + 51825871417245696t^{20} - 457619337935585280t^{19} - 2827144407067656192t^{18} - 10302681684658618368t^{17} - 25528863944714747904t^{16} - 36529876903334510592t^{15} + 11637127164532359168t^{14} + 230689789166449852416t^{13} + 723700103713558364160t^{12} + 1420493385482694033408t^{11} + 1956539635174559711232t^{10} + 1833396830954066018304t^{9} + 859300741913637814272t^{8} - 551975244079363522560t^{7} - 1637458159016104427520t^{6} - 1902570432380616572928t^{5} - 1459531070837857714176t^{4} - 792327289642546102272t^{3} - 297669920970680303616t^{2} - 70039981404865953792t - 7782220156096217088\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - 9248776x + 10583816198$, with conductor $7350$ | ||||||||||||
Generic density of odd order reductions | $1091/10752$ |