| Curve name | $X_{189k}$ | 
| Index | $96$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 5 & 4 \\ 4 & 5 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 2 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 4 & 7 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{189}$ | 
| Curves that $X_{189k}$ minimally covers |  | 
| Curves that minimally cover $X_{189k}$ |  | 
| Curves that minimally cover $X_{189k}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{22} - 1188t^{21} - 23868t^{20} - 289440t^{19} - 2455488t^{18} - 
17086464t^{17} - 113799168t^{16} - 731234304t^{15} - 4032847872t^{14} - 
17428414464t^{13} - 56930107392t^{12} - 139427315712t^{11} - 258102263808t^{10} 
- 374391963648t^{9} - 466121392128t^{8} - 559889252352t^{7} - 643691446272t^{6} 
- 606999674880t^{5} - 400438591488t^{4} - 159450660864t^{3} - 28991029248t^{2}\]
\[B(t) = 54t^{33} + 3564t^{32} + 110808t^{31} + 2156112t^{30} + 28963008t^{29} +
272408832t^{28} + 1621582848t^{27} + 2227544064t^{26} - 74151272448t^{25} - 
1005155205120t^{24} - 7932310290432t^{23} - 46085316083712t^{22} - 
212902085394432t^{21} - 819419579154432t^{20} - 2731112254144512t^{19} - 
8126147447488512t^{18} - 21848898033156096t^{17} - 52442853065883648t^{16} - 
109005867721949184t^{15} - 188765454678884352t^{14} - 259925943596875776t^{13} -
263495406090977280t^{12} - 155506489316868096t^{11} + 37371987911245824t^{10} + 
217645165622329344t^{9} + 292496756145389568t^{8} + 248790344307572736t^{7} + 
148166888424210432t^{6} + 60917342225301504t^{5} + 15674637765574656t^{4} + 
1899956092796928t^{3}\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 67950x + 6682500$, with conductor $630$ | 
| Generic density of odd order reductions | $271/2688$ |