Curve name | $X_{189m}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 12 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 10 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 9 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 12 \\ 12 & 11 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{189}$ | ||||||||||||
Curves that $X_{189m}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{189m}$ | |||||||||||||
Curves that minimally cover $X_{189m}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{28} - 1296t^{27} - 28512t^{26} - 378432t^{25} - 3438720t^{24} - 24095232t^{23} - 151372800t^{22} - 933949440t^{21} - 5207003136t^{20} - 22124593152t^{19} - 56108187648t^{18} + 7629963264t^{17} + 751360278528t^{16} + 3409956569088t^{15} + 7880803614720t^{14} + 6404299554816t^{13} - 21463780294656t^{12} - 96076270927872t^{11} - 207459805298688t^{10} - 315741299539968t^{9} - 410223063859200t^{8} - 526709019377664t^{7} - 639658069327872t^{6} - 617856815333376t^{5} - 410049117683712t^{4} - 163277476724736t^{3} - 29686813949952t^{2}\] \[B(t) = -54t^{42} - 3888t^{41} - 132192t^{40} - 2814912t^{39} - 41482368t^{38} - 432594432t^{37} - 2978519040t^{36} - 8032296960t^{35} + 100035772416t^{34} + 1707483856896t^{33} + 14577356242944t^{32} + 84668003647488t^{31} + 345087100846080t^{30} + 880011707940864t^{29} + 355136937394176t^{28} - 8918426978353152t^{27} - 49861062392020992t^{26} - 160979401322790912t^{25} - 353393050883457024t^{24} - 457619337935585280t^{23} + 414606971337965568t^{22} + 5830934634266886144t^{21} + 26577350261502640128t^{20} + 81399440376820924416t^{19} + 164369884682762846208t^{18} + 135847098129491951616t^{17} - 421770659303711047680t^{16} - 2127147854988841058304t^{15} - 5185422392023414996992t^{14} - 8491737859434209083392t^{13} - 9619682893088868532224t^{12} - 6583211064702674141184t^{11} - 111854215095140745216t^{10} + 6304449506767508865024t^{9} + 9232874632068527554560t^{8} + 8058975360397388808192t^{7} + 4843459269650383110144t^{6} + 1996139470038679683072t^{5} + 513626530302350327808t^{4} + 62257761248769736704t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 27180075x - 53324099750$, with conductor $25200$ | ||||||||||||
Generic density of odd order reductions | $139/1344$ |