Curve name | $X_{189n}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 12 \\ 12 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 12 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 10 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 9 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{189}$ | ||||||||||||
Curves that $X_{189n}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{189n}$ | |||||||||||||
Curves that minimally cover $X_{189n}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{28} - 1296t^{27} - 28512t^{26} - 378432t^{25} - 3438720t^{24} - 24095232t^{23} - 151372800t^{22} - 933949440t^{21} - 5207003136t^{20} - 22124593152t^{19} - 56108187648t^{18} + 7629963264t^{17} + 751360278528t^{16} + 3409956569088t^{15} + 7880803614720t^{14} + 6404299554816t^{13} - 21463780294656t^{12} - 96076270927872t^{11} - 207459805298688t^{10} - 315741299539968t^{9} - 410223063859200t^{8} - 526709019377664t^{7} - 639658069327872t^{6} - 617856815333376t^{5} - 410049117683712t^{4} - 163277476724736t^{3} - 29686813949952t^{2}\] \[B(t) = 54t^{42} + 3888t^{41} + 132192t^{40} + 2814912t^{39} + 41482368t^{38} + 432594432t^{37} + 2978519040t^{36} + 8032296960t^{35} - 100035772416t^{34} - 1707483856896t^{33} - 14577356242944t^{32} - 84668003647488t^{31} - 345087100846080t^{30} - 880011707940864t^{29} - 355136937394176t^{28} + 8918426978353152t^{27} + 49861062392020992t^{26} + 160979401322790912t^{25} + 353393050883457024t^{24} + 457619337935585280t^{23} - 414606971337965568t^{22} - 5830934634266886144t^{21} - 26577350261502640128t^{20} - 81399440376820924416t^{19} - 164369884682762846208t^{18} - 135847098129491951616t^{17} + 421770659303711047680t^{16} + 2127147854988841058304t^{15} + 5185422392023414996992t^{14} + 8491737859434209083392t^{13} + 9619682893088868532224t^{12} + 6583211064702674141184t^{11} + 111854215095140745216t^{10} - 6304449506767508865024t^{9} - 9232874632068527554560t^{8} - 8058975360397388808192t^{7} - 4843459269650383110144t^{6} - 1996139470038679683072t^{5} - 513626530302350327808t^{4} - 62257761248769736704t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 1698755x + 833613747$, with conductor $3150$ | ||||||||||||
Generic density of odd order reductions | $11/112$ |