Curve name | $X_{190g}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{190}$ | |||||||||
Curves that $X_{190g}$ minimally covers | ||||||||||
Curves that minimally cover $X_{190g}$ | ||||||||||
Curves that minimally cover $X_{190g}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1404t^{16} - 41472t^{15} - 628992t^{14} - 6635520t^{13} - 54825984t^{12} - 366280704t^{11} - 1955708928t^{10} - 8174960640t^{9} - 26378403840t^{8} - 65399685120t^{7} - 125165371392t^{6} - 187535720448t^{5} - 224567230464t^{4} - 217432719360t^{3} - 164886478848t^{2} - 86973087744t - 23555211264\] \[B(t) = -15120t^{24} - 497664t^{23} - 5681664t^{22} + 17915904t^{21} + 1520031744t^{20} + 25751126016t^{19} + 273235673088t^{18} + 2129396760576t^{17} + 12999169474560t^{16} + 64512287834112t^{15} + 267170114174976t^{14} + 941641313550336t^{13} + 2861569960574976t^{12} + 7533130508402688t^{11} + 17098887307198464t^{10} + 33030291371065344t^{9} + 53244598167797760t^{8} + 69776073050554368t^{7} + 71627092285980672t^{6} + 54004025426706432t^{5} + 25501900895944704t^{4} + 2404631929946112t^{3} - 6100640266715136t^{2} - 4274901208793088t - 1039038488248320\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 17x - 15$, with conductor $192$ | |||||||||
Generic density of odd order reductions | $109/896$ |